- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Mei, Zaidao (1)
-
Qiu, Qinru (1)
-
Rider, Daniel (1)
-
Wang, Boyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Incremental learning is a challenging task in the field of machine learning, and it is a key step towards autonomous learning and adaptation. With the increasing attention on neuromorphic computing, there is an urgent need to investigate incremental learning techniques that can work in this paradigm to maintain energy efficiency while benefiting from flexibility and adaptability. In this paper, we present SEMINAR (sensitivity modulated importance networking and rehearsal), an incremental learning algorithm designed specifically for EMSTDP (Error Modulated Synaptic-Timing Dependent Plasticity), which performs supervised learning for multi-layer spiking neural networks (SNN) implemented on neuromorphic hardware, such as Loihi. SEMINAR uses critical synapse selection, differential learning rate and a replay buffer to enable the model to retain past knowledge while maintaining flexibility to learn new tasks. Our experimental results show that, when combined with the EMSTDP, SEMINAR outperforms different baseline incremental learning algorithms and gives more than 4% improvement on several widely used datasets such as Split-MNIST, Split-Fashion MNIST, Split-NMNIST and MSTAR.more » « less
An official website of the United States government
